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A B S T R A C T   

This study aims to improve the estimates of the economic impacts of climate change by developing a river flood 
risk model CLIMRISK-RIVER and introducing it into an existing climate-economy integrated assessment model 
(IAM). It operates on a local scale and can project climate change-related river flood damage for various so
cioeconomic, climate and flood adaptation scenarios. Whereas other IAMs have relied on temperature as a 
climate change proxy, we show that precipitation is a key variable in projecting river flood damage. The way 
adaptation is accounted for in our flood damage functions has a large influence on the results, highlighting the 
relevance of modelling local level adaptation in IAMs. Results presented at different spatial scales demonstrate 
the relevance of river flood damage functions for estimating the economic impacts of climate change and allows 
for exploration of the spatial distribution of impacts through local estimates.   

1. Introduction 

Integrated assessment models (IAMs) of climate and the economy are 
commonly used to project the future economic impacts of climate 
change. While some IAMs estimate the climate impacts on specific 
physical systems (eg. energy, land use (Bosetti et al., 2007, Bouwman 
et al., 2006, Raoet al., 2008)), others paint a more general picture of 
climate impacts on the economy (Stern, 2008, Nordhaus, 2013, Anthoff 
and Tol, 2014). The latter set usually provides monetized climate im
pacts through climate damage functions and/or estimates of benefits of 
climate policy aimed at reducing the greenhouse gas emissions. Such 
models estimate the complex relationship between the anthropogenic 
and climate system using transparent and simplified reduced form 
functions. Since the original version of the DICE model (Nordhaus, 
1992), one of the first IAMs of climate change and the economy, envi
ronmental economists have made several attempts to improve these 
models to aid policymakers in making decisions about climate policy in 
the face of climate change uncertainty (Tol, 2018). 

Nevertheless, climate-economy IAMs have received various criti
cisms, including the aggregated spatial dimension of the models (Farmer 
et al., 2015), the incomplete representation of climate change risks 

(Stern, 2013), (van den Bergh and Botzen, 2014) and the fact that the 
damage functions that translate global warming into economic impacts 
are outdated and require an improvement (Diaz and Moore, 2017). In 
this respect, it should be noted that in most cases, these IAMs work on an 
aggregated spatial scale, meaning that there is either one region - the 
Earth - or several larger regions. For example, the well-known RICE 
model, which is the regional version of the global DICE model, estimates 
the economic impacts from climate change for 12 world regions 
(Nordhaus and Yang, 1996), (Nordhaus, 2017). 

Global information about the projected economic impacts of climate 
change is increasingly available at a refined spatial resolution for spe
cific impact categories, which can serve as a basis for updating the IAM 
impact functions if this improves IAM estimates of the economic costs of 
climate change. The effects of extreme weather and natural hazards on 
the economy due to climate change have been included in climate- 
economy IAMs to a very limited extent and estimates from catastrophe 
models of how natural disaster risks are expected to develop under 
climate change have become increasingly available (Botzen et al., 
2019). For instance, river flooding is an important damage category that 
must be better represented in IAMs, because it poses a significant eco
nomic impact, and sophisticated global modelling approaches to 
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estimate river flood risk at a detailed spatial resolution are increasingly 
available (Wardet al., 2015). About $ 50 trillion1 and 0.8 billion people 
are subjected to a 1-in-100-years river flood event (Kundzewicz et al., 
2013) and the direct economic losses from river floods between 1980 
and 2013 exceeded $ 1 trillion and caused a loss of more than 220,000 
lives (Munich et al., 2014). The river flood risk is expected to increase in 
many regions in the world (Wardet al., 2013), and it is important to take 
this into account in economic IAMs of climate change. 

The main goal of this paper is to improve the local estimates of the 
economic impacts of climate change by developing CLIMRISK-RIVER, a 
spatially-explicit model of river flood risk that is introduced into a 
broader climate-economy IAM CLIMRISK. There are four main reasons 
why CLIMRISK is the preferred IAM for this study. First, other IAMs 
(including RICE) do not provide precipitation projections, which we find 
to be an important explanatory variable of future changes in flood 
damages. Second, with CLIMRISK, we can model spatial heterogeneity 
in climate change impacts. The results of CLIMRISK-RIVER show that 
spatial heterogeneity in projected flood damages is substantial and 
modelling this provides insights into which areas face a high river flood 
risk. Third, CLIMRISK allows us to model climate projections 

probabilistically, which gives insights into uncertainty of climate change 
impacts. Fourth, with CLIMRISK, we are flexible with exploring how 
climate change impacts develop under many different scenarios, with 
limited computing time. 

CLIMRISK-RIVER also accounts for local human adaptation through 
the use of recently developed local flood protection standard database 
FLOPROS (Scussoliniet al., 2016). Accounting for local flood adaptation 
in estimating the river flood damage functions for the IAM is important 
as flood protection standards that reduce the probability of a river 
flooding already exist in many areas in the world. Governments are 
likely to update these standards if flood risk increases as a result of 
climate change. Most studies that use IAMs, such as DICE, account for 
adaptation implicitly through the reduction in the climate damage used 
in estimating the damage function (Nordhaus, 2017). We follow this 
approach by estimating the river flood damage functions implicitly 
using flood damage estimates that account for different flood protection 
standard scenarios. These scenarios range from maintaining current 
flood protection standards to implementing economically optimal pro
tection given a climate and socio-economic scenario. Through creating 
unique flood damage functions under each flood protection scenario, we 
contribute to the small body of literature that has made adaptation 
explicit in damage functions in climate-economy IAMs (de Bruin et al., 
2009), (Hope, 2011), (Dumas and Ha-Duong, 2013). 

Fig. 1. Structure of the CLIMRISK-RIVER model.  

1 All units are in US dollars. 
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Our approach of accounting for river flood risk in a climate-economy 
IAM is currently the closest to the work of (Kuik, 2017) in introducing 
the river flood damage functions in the Climate Framework for Uncer
tainty, Negotiation and Distribution (FUND) model, a climate-economy 
IAM (Anthoff and Tol, 2014). The flood damage functions in FUND 
generate estimates for 16 regions as a product of a regional damage 
coefficient, regional temperature, and gross-domestic product (GDP). 
Moreover, the functions make use of ad hoc medium and high adapta
tion scenarios from (Jongmanet al., 2015). However, with gridded flood 
damage and flood protection standard data available, it is now possible 
to produce accurate local estimates of expected annual flood damage. 
CLIMRISK-RIVER flood damage functions are spatially more detailed; 
more complete, as they account for wet and dry regions by means of 
gridded precipitation projections as an additional explanatory variable; 
and have a more realistic representation of adaptation policy. The 
reason for the latter is that flood adaptation scenarios are not implicitly 
assumed, but are modelled using data on existing, and future, 
economically optimal flood protection standards (Scussoliniet al., 
2016), (Wardet al., 2017). 

The end product of CLIMRISK-RIVER is a set of flood damage func
tion estimates which are introduced into a general framework of 
CLIMRISK, which allows the user to explore climate change related 
damage, including the expected damage due to river flooding. The 
model works for any user defined climate change and socioeconomic 
scenario combination presented in the IPCC 5th assessment report. The 
model can be used by policymakers interested in expected future 
changes in flood risk and implementing a flood adaptation policy in a 
particular geographic area. For this audience, CLIMRISK-RIVER can 
serve as a preliminary quick scan that gives insights into how flood risk 
is expected to develop under future scenarios and the effectiveness of 
flood protection infrastructure to limit this risk, which can be a moti
vation for conducting additional higher resolution studies to identify 
appropriate local flood risk management measures. Other users are 
members of the academic community who are interested in mapping 
river flood hotspots under different future scenarios to motivate further 
local-scale flood adaptation or climate hazard research. Moreover, the 
integration of flood risk in a general climate-economy IAM is likely to 
appeal to the broader community of researchers and policymakers who 
are interested in understanding global, regional, or local economic im
pacts from climate change. 

2. Methodology and data 

In this section, we present the methodology used to develop 
CLIMRISK-RIVER. This section follows a downstream flow that re
sembles the flow of methods presented in the flowchart Fig. 1. Firstly, 
we outline the ingredients required for developing the new river flood 
damage functions that emulate GLOFRIS (subsection 2.1). Next, we 
develop 6 regression models and evaluate their performance based on 
in-sample and out-of-sample GLOFRIS data (subsection 2.2). Once the 
most suitable model - Model 6 - is selected, it is introduced into the 
CLIMRISK model by feeding it downscaled climate and socioeconomic 
data from a spatially explicit IAM CLIMRISK (explained in Appendix 
subsection A). Finally, the results of CLIMRISK-RIVER and the resulting 
total climate damage of CLIMRISK after integration are presented in 
Section 3. 

2.1. Flood risk ingredients 

The main goal in developing CLIMRISK-RIVER is to produce vali
dated river flood damage functions for different protection standard 
assumptions that can be fed with temperature, precipitation and GDP 
estimates from any climate or socioeconomic scenario combination. The 
input for the flood risk emulator CLIMRISK-RIVER is based on the 
GLOFRIS model, a global framework for flood risk assessment that works 
on a detailed spatial scale (30” × 30”) and includes all main river basins 

worldwide (Winsemius et al., 2012). The main ingredients of the new 
flood damage functions for CLIMRISK-RIVER are as follows:  

• Risk: Expected annual damage (EAD)  
• Vulnerability: Flood protection standards  
• Hazard: Climate projections  
• Exposure: Economic projections 

Each of the above listed ingredients are explained in more detail in 
the following sections. 

2.1.1. Risk: expected annual damage (EAD) 
Formally, flood risk can be defined as the expected annual damage 

(EAD) or the damage of a hazardous event weighted by the probability 
of its occurrence. Over a smooth probability curve, it can be written as: 

EAD=

∫1

0

pD(p)dp (1)  

where EAD represents the EAD of the particular cell, D(p) is the damage 
in that cell caused by a flooding event of probability p, which is related 
to a flooding with return period r(p) in the following way: 

r(p)=
1
p

(2) 

The EAD estimates are made using current and future flood hazard 
layers, built-up area, GDP estimates, country level maximum damage 
estimates and depth-damage curves based on the occupancy type (Ward 
et al., 2017), (Tiggeloven et al., 2020), (Winsemius et al., 2016). 

To estimate the flood damage functions for CLIMRISK-RIVER using 
GLOFRIS data, we must retrace the steps of how the data were created in 
the first place. In GLOFRIS, flood damage is estimated for flood return 
periods of 2, 5, 10, 25, 50, 100, 250, 500 and 1000 years. For illustra
tion, the damage of a 2-year return period represents the loss that would 
be caused by relatively small floods with annual exceedance probability 
of 0.5. The resulting flood probabilities were calculated using Equation 
(2) and a smooth probability curve was obtained for the purpose of EAD 
estimation between the above-mentioned points. The EAD in CLIMRISK- 
RIVER for any particular cell can be calculated using the trapezoidal rule 
for approximating definite integrals: 

EADGF =
∑10000

i=1

DGF
(
xp− 1

)
+ DGF

(
xp
)

2
Δxp (3)  

where EADGF is the approximation of EAD (Eq. (1)) in the GLOFRIS (GF) 
model, x ∈ [0,0.0001 …,1] is a vector of equally spaced 10,000 points 
and Δxp = Δx is the length of equal spacing. 

These loss data are estimated in GLOFRIS for current conditions, but 
also for future climate and socioeconomic scenarios, and are available 
for different time periods centered around three years: 2030, 2050 and 
2080. The GLOFRIS modelling cascade uses forcing data from EU- 
WATCH (Weedonet al., 2011) over the period of 1960–1999 to force 
the hydrological model PCR-GLOBWB (Sutanudjajaet al., 2018) which is 
used for the flood inundation modelling as baseline conditions. As 
baseline for the socioeconomic data, GLOFRIS uses the HYDE database, 
which consists of gridded percentages of built-up area, population and 
GDP projections. 

As a starting point, damage estimates for rivers of different return 
periods for the baseline period are collected and these do not depend on 
different emissions or socioeconomic scenarios. Hence, the baseline 
represents current climate and socioeconomic conditions. The future 
projections of flood damage, however, are available for various climate2 

2 Climate scenarios: RCP2.6, RCP4.5, RCP6.0, RCP8.5. 
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and socioeconomic scenarios.3 Finally, the data are available for five 
different earth system model (ESMs)4 simulations that were used to 
force the GLOFRIS model projections for each RCP scenario (see Fig. 2). 
Each of the above-mentioned combinations of climate and socioeco
nomic scenarios for different ESMs in different time periods produces a 
single observation of EAD for each cell. Therefore, each cell ideally 
contains 305 observations of EAD with no missing data.5 By pooling 
estimates from different ESMs in our damage function estimation, we are 
effectively averaging across all five available ESMs and making our 
emulator ESM independent. With respect to climate input, the user 
would only need to specify the RCP scenario and global average tem
perature percentile realization through MAGICC (Appendix A.1), which 
would naturally correspond to a particular ESM. 

All the EAD estimates are expressed in billions of US dollars (2005 
PPP) and are available for 30′′x30′′ cells. To integrate CLIMRISK-RIVER 
into the CLIMRISK model, all the GLOFRIS river flood data must be 
upscaled to 0.5◦ × 0.5◦ by aggregating the impacts over the 30” × 30′′

cells. Prior to integration with CLIMRISK-RIVER, the emulated damage 
estimates were translated into US dollars (2010 PPP) to match the 
CLIMRISK monetary impact estimates when providing the total climate- 
change damages. 

2.1.2. Vulnerability: flood protection standards 
To obtain more reliable estimates of annual expected river flood 

damage, the current flood protection standards must be taken into 

account. The flood protection standards enter the flood risk model 
through the EAD function whereby damages of rivers with return pe
riods lower than the available protection standards are assumed to be 
zero. For example, if an area is protected against a 500 year return 
period flood, this means that the sum in Equation (3) only contains 
damage estimates of rivers with return periods greater than 500 years. 

A comprehensive global database - FLOPROS - of observed and 
modelled current river protection standards has recently been compiled 
(Scussoliniet al., 2016). The flood protection data are available at the 
state level and any given cell receives protection equal to its estimated 
state protection level. The river protection data are currently available 
for 2683 states in the world in the form of river return periods against 
which the state is protected. However, in estimating the annual expected 
flood damage in the future, we also need estimates of future flood pro
tection standards that depend on adaptation decisions about flood pro
tection investments. FLOPROS data consists of two options for future 
protection standards6  

• Baseline Height Standards (BaseHeightStd), which assume that the 
protection infrastructure is maintained at the baseline year height in 
the future and allow the river flood risk to vary over the course of the 
century. This scenario does not imply any additional river flood 
adaptation.  

• Baseline Probability Standards (BaseProbStd), which assume that the 
protection standards are updated so as to keep the baseline flood 
probability constant. This scenario does imply additional river flood 
adaptation as the flood protection standards are upgraded according 
to the varying natural factors in order to maintain constant flood 

Fig. 2. All possible future scenario combinations of flood damage data used to generate the flood damage functions.  

3 Socioeconomic scenarios: SSP1, SSP2, SSP3, SSP4, SSP5.  
4 ESMs used: HadGEM2-ES, GFDL-ESM2M, NorESM1-M, IPSL-CM5A-LR and 

MIROCESM-CHEM.  
5 The number 305 comes from the fact that there are 5ESMs × 5SSPs ×

4RCPs × 3years = 300 plus 5 additional baseline period observations (for each 
ESM). 

6 The names assigned to the protection standards in this paper are arbitrary 
and do not correspond to the names given by the original authors of the flood 
protection standards. 
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probability. Regardless of the constant flood probability, the flood- 
related damage could still vary with the amount of exposed assets 
and the severity of flooding. 

Taking this research a step forward through cost-benefit analysis, 
policymakers’ desired economic decision-making has been taken into 
account when designing the optimal level of river flood protection 
(Kuik, 2017).  

• Optimal Standards (OptimalStd), which assume that all states behave 
in an economically optimal manner and invest today in the level of 
protection that would yield the highest net present value (NPV) over 
the twenty-first century. 

In addition to the three adaptation scenarios, a fourth scenario - No 
Standards (NoStd) - will be used for comparison with the other as
sumptions. As suggested by the name, this scenario assumes that no cells 
are protected against any potential river floods, thereby ignoring exist
ing protection standards as modelled in FLOPROS. This is true for both 
the baseline year estimates and future projections. Although this is not a 
very realistic assumption, it helps us understand how important flood 
protection standards are in estimating the flood damages in an IAM. 

The data for optimal protection standards is not available for some 
cells due to, for example, missing future projections of socioeconomic 
data. In such cases, we assume that the protection is maintained at the 
BaseHeightStd level (if available). 

2.1.3. Hazard: climate change projections 
As in many climate IAMs, annual surface air temperature is among 

the primary climate variables of interest and serves as the main proxy for 
climate change. We are also interested in the effect of annual precipi
tation on the river flood risk. Precipitation has, until now, not been 
introduced into an IAM damage function and it is important to assess its 
impact on river flood risk in light of newly available local precipitation 
data. Although floods are generally short-lived events that are mainly 
driven by extremes in precipitation, we follow the common approach in 
IAMs to use annual climate indicators (in our case annual temperature 
and precipitation) as a proxy of climate change. This is in line with the 
purpose of CLIMRISK-RIVER to project changes in long term annual 
expected flood damage in response to long term trends in economic 
exposure and climate change, which as our results show can be 
approximated by changes in annual temperature and precipitation 
(Section 3.1). 

Whereas the climate forcing data in CLIMRISK is generated through 
MAGICC with the use of pattern scaling (see Appendix A.1), the forcing 
data in GLOFRIS contains daily gridded estimates of surface temperature 
and precipitation. These are generated using different ESMs, interpo
lated to 0.5◦ × 0.5◦, and they are bias corrected using observations from 
1960 to 1999 for the EU-WATCH project. These same estimates are then 
used to force the PCR-GLOBWB global water and hydrological model 
(Sutanudjajaet al., 2018). The EU EU-WATCH forcing observations are 
also used to generate the baseline flood risk. The reason why 2010 is not 
used as the baseline period for the climate forcing data in GLOFRIS is the 
fact that the authors used a 40-year interval around the year of interest 
in extreme value analysis. As observed data is not available for 
1990–2030, the authors assume that global hydrological processes did 
not drastically change between 1980 and 2010 after accounting for 
climate. Therefore, the EU-WATCH baseline period estimates are used in 
the year 2010 as the baseline period. To create the climate input vari
ables necessary for the river flood damage functions, daily temperatures 
were converted to annual mean temperature and daily precipitation to 
total annual precipitation. Since the GLOFRIS model produces estimates 
for three periods centered around years 2030, 2050 and 2080, mean 
annual surface temperature and total annual precipitation estimates 
were averaged over the years 2010–2050, 2030–2070 and 2060–2100. 
Finally, differences of precipitation and temperature with respect to the 

baseline period average climate were taken in order to fit the MAGICC 
climate projection units. For temperature, the difference is expressed in 
absolute value of degrees Celsius, while for precipitation the percentage 
change of precipitation with respect to baseline period is required. 

2.1.4. Exposure: economic projections 
Exposure is another important determinant of flood damage, because 

it captures the extent of assets that are prone to flooding. GDP PPP was 
extracted from the SSP-database with the OECD Env-Growth GDP pro
jections. The GDP data used to estimate the flood damages in GLOFRIS 
are derived from the IIASA SSP Database (Riahiet al., 2017). Next, the 
future development of urban areas is estimated using the 2UP model 
(Van Huijstee et al., 2018). In this model, urban and rural populations 
are distributed according to a map of urban areas, which helps in 
determining the exposure of a certain area. In CLIMRISK-RIVER, we 
proxy the GLOFRIS exposure data using IIASA projections for various 
SSP scenarios combined with the compatible SRES scenarios to create a 
spatially explicit, 0.5◦ × 0.5◦ grid of local GDP estimates. More infor
mation about exposure, SSP and SRES data can be found in Appendix 
A.2. 

2.2. CLIMRISK-RIVER 

An important step in CLIMRISK-RIVER development is the formu
lation of the flood damage functions. The main decisions involved in this 
step are:  

• Geographic scale of model parameters  
• Choice of explanatory variables 

The geographic scale of model parameters refers to the geographic 
area that a particular damage function coefficient covers. Depending on 
input data availability, the scale can range between highly local 30” ×
30” grid cells and global. Since the scale of downscaled inputs in our 
IAM is somewhere in between, the primary candidates for the model 
scale in CLIMRISK-RIVER are the 0.5◦ × 0.5◦ grid cell and river basin 
level. The main advantage of river basin level functions is simplicity - 
each cell within a river basin would inherit the set of parameters cor
responding to the basin. The main disadvantage, however, is the loss of 
model fit as heterogeneous grid cell data are aggregated into a single 
function over a potentially large basin area. The opposite is true of a grid 
cell level function. As we prefer the higher explanatory power of the grid 
cell level functions over the smaller total number of function estimates, 
we set the scale to grid cell level to make full use of local input data. The 
scale of results is still entirely up to the user who can explore various 
scenario combinations at different levels of aggregation. 

The next step concerns the choice of the dependent and explanatory 
variables. The main goal of the regressions that follow is to project the 
ΔEADt, that is, the change in EAD with respect to the baseline period. For 
the available data, t represents a time period mid-point for which the 
GLOFRIS expected annual damage estimates are made, namely, t ∈
[2010, 2030, 2050, 2080]. 

In order to find the most suitable statistical model for CLIMRISK- 
RIVER, we take a nested model approach and evaluate several func
tional forms with increasing number of terms. 

The following nested model consisting of six functional forms is 
evaluated: 

Model 1: ΔEAD GF,t = β1ΔGDPt 
Model 3: ΔEAD GF,t = β1ΔGDPt + β2ΔTt , where ΔTt represents the 
absolute change in annual mean surface air temperature in year t7 

Model 3: ΔEAD GF,t = β1ΔGDPt + β2ΔTt + β3ΔT2
t 

7 All changes in temperature and precipitation are with respect to 1980 
observed climatology from EU-WATCH (Weedonet al., 2011). 
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Model 4: ΔEAD GF,t = β1ΔGDPt + β2ΔTt + β3ΔT2
t + β4ΔPt , where 

ΔPt represents the percentage point change in precipitation in year t. 
Model 5: ΔEAD GF,t = β1ΔGDPt + β2ΔTt + β3ΔT2

t + β4ΔPt + β5Δ P2
t 

Model 6: ΔEAD GF,t = β1ΔGDPt + β2ΔTt + β3ΔT2
t + β4ΔPt +

β5Δ P2
t + β6ΔTtΔPt , where ΔTtΔPt represents the interaction term 

between temperature and precipitation change. 

After evaluating the six different emulator models, Model 6 proved to 
have the best predictive power across different RCP-SSP scenario com
binations. In other words, Model 6 presents the best emulator of our 
chosen river flood risk model GLOFRIS and is chosen as the CLIMRISK- 
RIVER model. It is defined as: 

ΔEAD GF,t = β1ΔGDPt + β2ΔTt + β3ΔT2
t + β4ΔPt + β5Δ P2

t + β6ΔTtΔPt

(4)  

where β1 is the effect of a $1 billion increase in GDP,8 ΔGDPt is the 
difference in GDP between year t and 2010, β2 is the effect of a 1 ◦C 
increase in surface air temperature, ΔTt represents the change in mean 
surface air temperature at t, β3 is the squared term of surface air tem
perature, ΔT2

t is the change in squared surface air temperature at t, β4 is 
the effect of a 1% increase in total annual precipitation, ΔPt is the per
centage point change total annual precipitation at t, β5 is the squared 
term of total annual precipitation, ΔPt

2 is the percentage point change in 
total squared annual precipitation at t, β6 is the effect of a 1% increase in 
total annual precipitation conditional on a 1 ◦C increase in surface air 
temperature and ΔTtΔPt is the interaction term between the change in 
mean surface air temperature and the percentage point change in mean 
total annual precipitation at t. 

This model was selected so as to take advantage of the explanatory 
power of precipitation when estimating ΔEAD. Precipitation could 
capture the effect that wetter (or drier) regions could have on the fre
quency of flooding. In addition, the interaction between temperature 
and precipitation could capture the interaction between, for example, 
hotter and wetter regions both of which could lead to an increase in 
flood risk higher than estimated by temperature and precipitation alone. 
This functional form is similar to the functional form of the RICE damage 
function, where quadratic climatic terms are used to capture nonlinear 
effects on damage of high temperature and in our case also precipitation 
that is excluded in RICE (Nordhaus, 2014). There is no constant term in 
the regression as the function passes through the origin, and the left and 
right-hand side terms are zero in the baseline year. While the GDP es
timate in RICE is multiplied by the impact function (Eq. (11)), the ΔGDPt 
in this model is an explanatory variable. The specific units for temper
ature and precipitation explained above were selected so as to match the 
MAGICC model output (Appendix A.1). MAGICC generates differences 
in annual surface temperature in degrees Celsius and percentage dif
ference in annual precipitation with respect to any particular base year. 
Since the precipitation data used for the fitting was originally expressed 
in kg

m2*s, a unit conversion is necessary to obtain the percentage difference: 

ΔPt = 100*
Pt − P0

P0
(5)  

where ΔPt is the percentage change in total annual precipitation in year 
t, Pt is the total annual precipitation estimate at time t, and P0 is the 
baseline total annual precipitation estimate. 

Due to the large number of possible scenario combinations that can 
be fed to the CLIMRISK-RIVER model, a select few are presented in this 
paper. As climate and economic trajectories are uncertain, it is useful to 
consider the “middle-of-the-road” case of either flood risk driver and to 
explore the impact of varying the other. In this paper, we chose to keep 
the socioeconomic aspect of development fixed by opting for the SSP2 

scenario. Therefore, we vary the climate projection and mainly focus on 
the following two scenario combinations 9  

1. Unsustainable World in the Middle of the Road (RCP6.0 - SSP2): In this 
scenario, the carbon emissions peak around year 2080, declining 
thereafter. In combination with the SSP2 scenario of intermediate 
challenges for both adaptation and mitigation, this scenario combi
nation allows us to explore the impact of an intermediate baseline 
scenario without any emission reduction policies.  

2. Sustainable World in the Middle of the Road (RCP2.6 - SSP2): “Abiding 
by the Paris Climate Agreement (RCP2.6) and strongly curbing car
bon emissions (well below 2 ◦C) this scenario is consistent with the 
sustainable future assumption whereby countries are abiding by the 
Paris Climate Agreement (Schleussneret al., 2016). 

Given these two contrasting representations of carbon emission 
development, expected economic damages from not mitigating climate 
change to 2 ◦C can be calculated. In addition, we will also compare SSP1 
and other SSPs in the Results section to explore the uncertainty arising 
from economic development. Since the model can project annual dam
ages up to 2100, it is common practice to calculate the net present value 
(NPV) of those damages using a discount rate (Tol, 2008). This estimate 
is referred to as discounted climate damages. This rate is set at 3% as is 
common in other IAMs (Tol, 2018), (Nordhaus, 2017). Therefore, 
whenever we refer to discounted total ΔEAD, we are, in fact, referring to 
the change in total EAD in a particular area in the twenty-first century 
between the years 2010 and 2100, discounted at 3% annually. 

After the proposed Model 6 is selected as the CLIMRISK-RIVER 
model, the next step is to introduce it into CLIMRISK in the following 
manner (see Appendix A):  

1. MAGICC model is used to generate probabilistic estimates of global 
temperatures for the period 2010–2100.  

2. CLIMRISK’s pre-defined downscaling factors for each cell are used to 
obtain grid-cell level annual mean temperature and precipitation 
data.  

3. The downscaled MAGICC climate and SRES/IIASA socio economic 
data is fed to the CLIMRISK-RIVER damage function to obtain grid 
cell level river flood damage estimates.  

4. The absolute expected river flood damage is added to the CLIMRISK 
damage estimates, making up the improved CLIMRISK estimate of 
climate-related damages. 

In the following section, the expected river flood damage estimates 
of the CLIMRISK-RIVER are presented first, followed by the total ex
pected climate-related damage from the integrated CLIMRISK model. 

Table 1 
Comparison of average Adj.R2 across different CLIMRISK-RIVER model 
candidates.  

Average Adj. R2 NoSTD BaseProbSTD BaseHeightSTD OptimalSTD 

Model 1 0.57 0.62 0.44 0.37 
Model 2 0.64 0.69 0.52 0.48 
Model 3 0.66 0.71 0.56 0.57 
Model 4 0.74 0.77 0.66 0.63 
Model 5 0.75 0.78 0.67 0.64 
Model 6 0.76 0.78 0.69 0.66  

8 All the listed effects refer the change in expected flood damage ΔDt. 

9 In addition to these two consistent climate-economy scenarios, we also 
present some results for other RCP scenarios when we explore the advantages of 
climate change mitigation in Section 3.2. 
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3. Results 

In this section, we present some key results from the CLIMRISK- 
RIVER model. First, the model is validated using in-sample and out-of- 
sample ΔEAD estimates from the original GLOFRIS model. Next, the 
flood damage estimates produced by the CLIMRISK-RIVER model are 
presented on an aggregate level for several large regions in the world. 
Here, we also present some key country-level results. Finally, particu
larly interesting local damage estimates are presented to illustrate the 
relevance of estimating climate impacts at a spatially explicit level. Here 
we specifically focus on grid cells most affected by river flooding and 
identify cities that fall under these areas in the world and in Europe. 

3.1. CLIMRISK-RIVER model evaluation 

The performance of the climate change related river flood damage 
functions must first be evaluated before being introduced into the 

CLIMRISK framework. First, we evaluate the adjusted R2 value for each 
model across all grid cells to see how much of the variation in ΔEAD it 
can explain. Next, we evaluate the in-sample and out-of-sample fore
casting performance of the model by computing the mean-normalized 
root mean squared error (NRMSE) for each cell.10 The results in the 
main text focus on two protection standard assumptions, BaseHeightStd 
and OptimalStd, which were selected because of the need to capture the 
most realistic range of adaptation policies focused on maintaining the 
current height of flood protection (BaseHeightStd) and moving towards 
protection standards that are economically optimal given socio- 
economic development and climate change (OptimalStd). The NoStd 
assumption can lead to misleading flood risk predictions and is used 
solely to illustrate the importance of including flood protection 

Fig. 3. In-sample (IN) and out-of-sample (OUT) model fit and forecasting performance of Models 3 and 6. There is no evidence of over-fitting as there is little 
difference between the NRMSE and adjusted R2 distribution of IN (row 2) and OUT (row 3). 

10 See Appendix C.1 for the description of NRMSE and Appendix C.2 for more 
NRMSE results. 

P. Ignjacevic et al.                                                                                                                                                                                                                              



Environmental Modelling and Software 132 (2020) 104784

8

Fig. 4. Adjusted R2 and NRMSE: Measures of model fit and forecasting performance in Europe and South-East Asia. When NRMSE = 1 for a given cell, the model 
makes a forecasting error equivalent to one mean value of the observations. 
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Fig. 5. Forecasting performance and model fit of Model 6 as measured by the out-of-sample (OUT) distribution of NRMSE and adjusted R2 in Europe and South- 
East Asia. 
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standards in flood risk models. BaseProbStd is also set aside as it assumes 
that countries monitor the flood probability level and upgrade their 
standards to keep the flood probability constant, a policy that many 
developing countries are currently not pursuing. Nevertheless, the 
comparison of regression estimates for the NoStd and BaseProbStd case 
can be found in Table 5 and are available in the CLIMRISK-RIVER model. 

Since there are over 16,000 cells, each with its own adjusted R2 

model estimate, Table 1 reports only the average adjusted R2 values. 
From Table 1, it is clear that the model with the most explanatory 

power is Model 6, which yields the highest average adjusted R2 across all 
flood protection standard assumptions. This is to be expected as Model 6 
contains more predictors and, unlike the other models, is able to capture 
the interaction between the climate regressors. Unlike the R2, the 
adjusted R2 penalizes the use of additional explanatory variables and is 
therefore comparable across different model specifications. It is also 
important to note that the explanatory power increases by 0.08 on 
average between Models 3 and 4 across all protection standard as
sumptions. Model 4 is the first proposed model to contain precipitation 
as an additional explanatory variable. Precipitation has often been 
ignored in integrated assessment models where the sole focus is placed 
on temperature change. See Table 5 in the appendix for the complete 
regression coefficients of the CLIMRISK-RIVER model for all protection 
standard assumptions. 

As we are evaluating a nested model with 6 functional forms of 
increasing number of predictors, we will only focus here on comparisons 
between Model 3 and Model 6. The main reason for this is that Model 3 
represents a functional form similar to that of RICE and CLIMRISK 
models, with quadratic function of temperature change. This makes 
Model 3 consistent and comparable to other IAMs, unlike Model 1 which 
ignores climate factors or Models 2, 4 and 5 which include them but 
either ignore the quadratic terms of temperature/precipitation or the 
interaction between the two. The model fit to GLOFRIS data is shown in 
Fig. 3. Two main conclusions can be drawn from these figures. First, 
Model 6 has a better fit to actual data than Model 3 as is measured by the 
mean-normalized RMSE and adjusted R2. The variance of the mean- 
normalized adjusted R2 is lower under Model 6. Whereas Model 3 
only accounts for GDP and first order temperature change, Model 6 also 
accounts for precipitation and the squared and interaction terms of 
temperature and precipitation. Second, Model 6 is able to predict future 
projected GLOFRIS estimates reasonably well with the majority of pre
dictions not over or underestimating by more than 1.5 times the mean 
value of the projected GLOFRIS damage. 

The spatial distribution of adjusted R2 and NRMSE in Europe and 
South- 

The spatial distribution of adjusted R2 and NRMSE is presented for 
Europe and South-East Asia in Fig. 4 along with their respective histo
grams in Fig. 5. The two regions were selected for presentation as Europe 
is expected to experience the lowest amount of flood damage and South- 
East Asia the highest. South-East Asia is also among the least flood 
protected regions in the world, whereas the opposite is true of Europe. It 
is apparent from Fig. 4 that in the northern region in India around the 
Ganges river, where damage estimates are among the highest in the 
world, the model forecasts damage reasonably well with NRMSE of 
around 0.5. The same is true of the North-Eastern part of China in the 
Yangtze river basin. In Europe, the adjusted R2 is higher in central and 
western parts than in north-eastern Europe, in the Baltic region. There is 
no clear spatial pattern with respect to NRMSE. 

From the histogram plots, it is apparent that most adjusted R2 values 
are greater than 0.5 and that most NRMSE values are lower than 2. The 
model fit is good in Europe, with a mean of 0.65 (0.61) and a variance 
0.04 for the BaseHeightStd (OptimalStd). In South-East Asia, the fit is even 
better with a mean adjusted R2 of 0.75 (0.74) for the BaseHeightStd 
(OptimalStd) and variance of 0.02. The out-of-sample (OUT) explanatory 
power of BaseHeightStd seems slightly higher than that of OptimalStd in 
both regions. This can be explained by the fact that protection standards 
play an important role in forecasting future flood-related damage, 

weakening the climate signal that feeds into CLIMRISK-RIVER.11 

Having performed various model validity checks, we can now 
explore the regression results using the regression coefficients from the 
out-of-sample validation for different flood protection standard as
sumptions. Table 5 in the appendix illustrates coefficient distributions 
for each protection standard assumption for Model 6. An important 
conclusion that can be drawn from these results is that protection 
standards play an important role in producing the annual expected 
damage estimates. As the flood protection assumption is changed from 
NoStd towards OptimalStd, the climate change signal (temperature and 
precipitation) weakens, while the GDP signal remains strong but with a 
smaller effect. Therefore, the key determinant of climate change related 
flood risk under the economically optimal protection standard is not the 
climate change but the standard itself and the total economic output. 
Increased economic output mostly leads to higher river flood damage 
across all protection standards, with the median independent impact of a 
$ 1 billion increase in GDP leading to a $0.1–2.4 million increase in EAD 
across all scenarios (Table 5 column 4). Temperature increase is ex
pected to increase flood damage, but the median effect is zero across all 
cells for most protection standard assumptions. The effect of precipita
tion is also in the direction that it leads to more river flood damage for 
most cells. The median effect of a 1% increase in annual total precipi
tation on additional flood damage across all cells is around $0.02 million 
for the NoStd and $ 0 million for OptimalStd. The mean effect of squared 
terms varies, but overall indicates that many cells experience increasing 
damage to temperature and precipitation increase. This property of the 
damage functions is important as it helps in capturing nonlinear re
sponses of flood damage to higher temperature and precipitation 
(Nordhaus, 1992). The interaction term is positive on average, indi
cating that temperature and precipitation reinforce each other’s impact 
on total damage. In other words, wet-hot regions are subject to more 
severe flooding than dry-hot regions. 

3.2. Aggregate flood risk 

Next, we look at the development of climate change related flood risk 
on an aggregate level, firstly on a regional and continental and then on a 
country level. Fig. 6 shows the evolution of river flood risk on a global 
scale and in several regions: United States, Europe, Africa, South-East 
Asia and Latin America. The results do not vary significantly between 
different RCP scenarios in the first half of the century, but start to 
diverge in the second for both adaptation assumptions. The reduction in 
river flood risk is much greater with improved protection standards than 
with a stricter emission reduction policy, regardless of the RCP scenario 
or region. This is evident from the spread between the red and blue lines 
corresponding to BaseHeightStd and OptimalStd. Under the BaseHeightStd 
on the global scale, the expected river flood damage could reach $3.5 
trillion in 2100. The evolution of climate related river flood damage is 
similar in Europe, with damage reaching $25–30 billion in 2100. South- 

11 The GLOFRIS modelling framework uses a global hydrology and water 
resource model at 5′ x 5′ resolution and downscaled to 30′′ x 30′′ resolution 
which simulates fluvial flooding based on a 2D volume river routing model. 
This flood model shows the best results for Europe and North America, where 
the meteorological forcing is generally more accurate as a result of availability 
of station data and reanalysis products (Sutanudjajaet al., 2018). This is in line 
with the projection accuracy of CLIMRISK-RIVER which shows the highest 
values of R2 and the lowest RMSE on average in Europe and the US. Further
more, due to the strong seasonality in forcing and discharge, 
monsoon-dominated areas are also well simulated. The least accurate results 
are obtained in African rivers due to groundwater dynamics, snow-dominated 
areas, and continental eastern Europe, because of overestimations in ground
water recession constants (Sutanudjajaet al., 2018). For readers who are 
interested in more information about the physical reasoning behind the 
GLOFRIS flood risk results and strengths and weaknesses we refer to the orig
inal GLORIS paper. 
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East Asia and Africa are expected to experience the bulk of the total 
global damage, $1.5–2.5 trillion and $1.2 trillion respectively in 2100. 
When optimal adaptation is introduced, the expected damage is reduced 
drastically on a global scale, to around $ 250 billion in 2100. However, 
the damage reduction is relatively lower in Europe (around $5–10 
billion, a 66% reduction) when compared to South-East Asia (around $ 
200 billion, 90% reduction) and Africa (around $140 billion, a 90% 
reduction). The main reason for this drastic regional difference is the 
fact that the protection standards already in place in the developed 
world are close to (or at) the optimal level of protection standards. 
Introducing the optimal level of protection standards ensures that the 
river flood damage due to climate change does not exceed 30% and 10% 

of the business-as-usual potential damage in Europe and South-East 
Asia/Africa respectively. 

To put climate change-related river flood risk into the perspective of 
total damage from climate change, we compare the results of our model 
with the damage in CLIMRISK.12 Fig. 6 presents the evolution of 
CLIMRISK and CLIMRISK-RIVER for different regions in the world13. On 
a global scale (top-left), the ΔEAD under the BaseHeightStd assumption is 

Fig. 6. Annual economic damage in CLIMRISK and ΔEAD in CLIMRISK-RIVER under different protection standards and climate assumptions. Regional inequalities of 
river flood damage exist and are in some cases comparable in size to previously estimated total climate damage estimates in CLIMRISK model (SE-Asia and Africa). 

12 The plotted CLIMRISK values do not account for CLIMRISK-RIVER estimates 
(i.e. before CLIMRISK-RIVER integration).  
13 More results for other protection standard assumptions can be found in 

Appendix C Fig. 18. 

P. Ignjacevic et al.                                                                                                                                                                                                                              



Environmental Modelling and Software 132 (2020) 104784

12

equivalent to 50% of the CLIMRISK model damage projections for the 
RCP 2.6 - SSP2. South-East Asia and Africa are expected to experience a 
large increase in flood risk, because adequate flood protection standards 
are lacking or non-existent in many areas. The opposite is true in Europe 
and the United States, where CLIMRISK-RIVER projects river flood 
damage of much lower magnitude than the CLIMRISK damage pro
jections. On an aggregate level, the river flood damage under the 
BaseHeightStd assumption presents a relatively lesser threat to Europe 
and the United States than to the less developed world of South-East Asia 
and Africa. Another important conclusion that can be drawn from Fig. 6 
pertains to the relative impact of climate mitigation under the two 
models. Namely, the CLIMRISK model is more sensitive to climate 
change mitigation than CLIMRISK-RIVER as indicated by the relative 

difference in damage estimates under the RCP 2.6 and RCP 6.0 climate 
scenarios. 

Socio-economic development plays an important role in future flood 
risk as it determines the number of exposed assets. Fig. 7 illustrates flood 
risk estimates under different SSP scenarios and the RCP 2.6 climate 
scenario. In all regions, the SSP5 scenario of fossil fuel development 
would universally lead to the highest expected river flood damages. The 
SSP3 and SSP4 scenarios, both involving a relatively high level of 
climate adaptation compared to that of other SSPs, would lead to the 
lowest expected river flood damages in most regions. 

3.2.1. Country-level CLIMRISK-RIVER 
In this section, we present the CLIMRISK-RIVER damage estimates on 

Fig. 7. ΔEAD in CLIMRISK-RIVER under different socio-economic projections (SSP scenarios). The wide uncertainty range in flood damage projections is captured, 
highlighting the importance of socioeconomic scenario assumption used. 
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a country level. The damage estimates are presented in terms of dis
counted ΔEAD relative to the discounted GDP for the period 2010–2100. 
Fig. 8 below presents a world map of country-level damage estimates for 
the BaseHeightStd adaptation scenario. 

Table 2 shows the top 10 countries in the world 14 and in Europe 15 in 
terms of highest discounted total ΔEAD in the CLIMRISK-RIVER model. 
Eight of the ten global highest are in South-East Asia and two in Africa, 
specifically the Democratic Republic of Congo (DR Congo) and Egypt. 
The discounted climate change related river flood damage in the top 10 
most affected countries in the world is around $16 trillion, which could 
be brought down to about $300 billion by implementing the optimal 
level of flood protection standards under the RCP 2.6 scenario. In 
Europe, damages are much lower with a combined total of around $105 
billion dollars of discounted total ΔEAD in the top 10 countries under the 
RCP 2.6 scenario and with $110 billion under RCP 6.0. This damage 
could be reduced by adopting an optimal flood protection policy, 
bringing them down to around $25 billion under both RCP 2.6 and RCP 
6.0. To conclude, European countries stand to gain relatively less from 
additional adaptation than the most affected countries in the world 
because the adaptation standards already in place in many European 
countries are high. Please note that it is possible for the damage under 
RCP 2.6 to be higher than under RCP 6.0 scenario due to varying natural 
factors accounted for in GLOFRIS (precipitation, temperature, evapo
ration etc.). Some regions could become wetter or drier with increasing 
temperature or could switch between wet and dry periods throughout 
the twenty-first century depending on varying natural factors. This ef
fect could ultimately determine the total damage due to river flooding. 

3.3. Local flood risk 

In this section, we analyze the local impacts of river flooding due to 
climate change. This involves the estimation of the discounted value of 
river flood damage due to climate change at the grid cell-level along 
with city-level estimates. Fig. 9 illustrates the effect that flood adapta
tion standards have on the expected flood damage due to climate 
change. The selected scenario combination in this figure is RCP 6.0 - 
SSP2 and the damages are expressed as a fraction of discounted GDP. In 
Europe, the area around the Rhine river basin would benefit from 
additional flood adaptation. There are also clear benefits to river flood 
adaptation in Eastern Europe, around the northern coast of the Black Sea 
(Ukraine). The greatest benefits from optimal protection standards can 
be observed in South-East Asia and Africa. The northern region of India 
is expected to experience serious flooding due to climate-change along 
the Ganges river basin under the current level protection. In China, the 
Yangtze river is also expected to cause significant damage to the built 
environment. In Africa, the Nile river poses a flood threat under the 
baseline protection standards. Central Africa also stands to benefit 
greatly from river flood adaptation along the Congo river basin as most 
of these areas currently have low (or no) river flood protection 
standards. 

In the following subsection, we focus on cells most severely affected 
by future flood risk and identify cities that fall within their boundaries. 

3.3.1. City-level CLIMRISK-RIVER 
River flooding represents a serious threat to the built environment, 

especially in areas wherein flood protection standards are lacking and 
many assets are exposed. Most cities are built around rivers or other 
available bodies of water, which makes them vulnerable to flooding, and 
this is particularly the case in overpopulated cities that are less devel
oped and lack flood protection. Although CLIMRISK-RIVER does not 
produce city-level estimates, we identify in Table 3 the cities in the 
world residing in cells that are expected to experience the most dis
counted total ΔEAD between 2010 and 2100. This is not a perfect 
measure of city-level flood risk, but helps us identify the cities located in 
most flood risk prone areas. The first half of the table consists of city- 
cells that are expected to experience the most discounted damage in 

Fig. 8. World map of discounted total ΔEAD expressed as a percentage loss of 
discounted GDP for the period 2010–2100. The fill color represents the severity 
of damage under the BaseHeightStd flood protection assumption and RCP 2.6 
climate scenario. 

Table 2 
Top 10 most endangered countries in the worlda and in Europeb in the twenty 
first century, as measured by the discounted total ΔEAD (billion $USD, 2010) 
due to climate change (columns 2–5). The presented discounted damage esti
mates refer to the sum of 0.5◦ × 0.5◦ cells belonging to a specific country for 
SSP2 scenario using IIASA projections (see Appendix A).  

World ΔEAD Climate Scenario RCP 2.6 Climate Scenario RCP 6.0 

Country BaseHeightStd OptimalStd BaseHeightStd OptimalStd 

India 8219 789 7776 757 
DRC 2238 13 2160 13 
China 1950 138 1990 144 
Cambodia 1218 144 1199 141 
Bangladesh 1084 136 1043 130 
Vietnam 564 25 572 25 
Indonesia 540 521 499 79 
Myanmar 401 9 380 10 
Thailand 384 23 395 23 
Nigeria 361 15 334 15 

Europe ΔEAD Climate Scenario RCP 2.6 Climate Scenario RCP 6.0 
Country BaseHeightStd OptimalStd BaseHeightStd OptimalStd 

Russia 113.36 21.22 109.78 19.99 
Ukraine 48.85 4.71 46.92 4.71 
Germany 26.67 11.31 29.45 11.73 
Hungary 26.50 1.55 27.56 1.70 
Portugal 17.61 16.15 17.79 16.30 
Italy 13.96 6.18 13.83 6.13 
Poland 11.67 2.31 12.08 2.50 
Austria 11.45 2.75 12.11 3.10 
France 11.06 7.14 11.68 7.18 
Turkey 10.11 2.75 10.54 2.95  

a Rounded to the nearest integer. 
b Rounded to two significant digits. 

14 Rounded to the nearest integer.  
15 Rounded to 2 significant digits. 
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Fig. 9. Local CLIMRISK-RIVER: Discounted annual expected damage on a grid cell level for BaseHeightSTD (left panel) and OptimalSTD (right panel) flood pro
tection standards for different regions. 
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the world. Here, eight of the ten city-cells belong to India and two in DR 
Congo. The reasons for this include relatively low flood protection 
standards as witnessed by the benefits of flood adaptation under the 
OptimalStd assumption, a high potential for flooding around the Ganges 
river basin, and an abundance of exposed assets. 

The top 10 European city-cells are expected to experience relatively 
less damage, with a total discounted ΔEAD of around $ 80.45 billion 
under RCP 2.6 and the BaseHeightStd assumption. Still, there are benefits 
from OptimalStd that result in around $31.55 billion discounted ΔEAD.16 

Under RCP 6.0 the situation is similar, with BaseHeightStd leading to $33 
billion and OptimalStd to $5.6 billion additional damage. The bulk of this 
damage would be experienced around the Danube river basin in Eastern 
Europe, as was also evident from Fig. 9. 

We are interested in the difference in expected flood risk among city- 
cells and express the damage projections as a fraction of GDP17. Using 
this method, we define the following four arbitrary risk categories:  

1. Low-risk city-cells: Discounted ΔEAD of less than 5% discounted GDP;  
2. Medium-risk city-cells: Discounted ΔEAD between 5% and 25% of 

discounted GDP. 

Table 3 
Top 10 most endangered city-cells in the worlda and in Europeb in the twenty-first century, as measured by the discounted total ΔEAD (billions $USD, 2010) due to 
climate change (columns 3–6).  

World ΔEAD  Climate Scenario RCP 2.6 Climate Scenario RCP 6.0 

City-cell BaseHeightStd OptimalStd BaseHeightStd OptimalStd 

Mumbai IND 732 591 703 569 
Kisangani COD 588 3 562 3 
Kakinada IND 515 3 482 3 
Kolkata/Haora IND 499 3 494 3 
Rajahamundry IND 287 2 269 2 
Dongguan CHN 278 74 275 72 
Mbuji-Mayi COD 209 1 197 1 
Varanasi IND 190 2 161 2 
Phnom-Penh KH 168 1 166 1 
Bhubaneshwar IND 141 1 145 1 

Europe ΔEAD  Climate Scenario RCP 2.6 Climate Scenario RCP 6.0 
City-cell BaseHeightStd OptimalStd BaseHeightStd OptimalStd 

Gyor HU 18.03 0.07 18.88 0.08 
Porto PT 15.57 15.03 15.81 15.26 
Kiev UKR 9.39 1.22 8.93 1.19 
Frankfurt DE 7.10 1.27 8.13 1.43 
Cologne DE 5.16 1.27 5.97 1.38 
Zurich CH 4.53 4.37 4.52 4.33 
Kharkiv UKR 4.22 0.18 4.11 0.18 
Vienna AU 3.96 0.91 4.20 1.08 
Chisinau UKR 3.87 3.87 4.23 4.23 
Lysychansk UKR 3.82 0.16 3.74 0.16  

a Rounded to nearest integer. 
b Rounded to two significant digits. 

Fig. 10. World cities located in low-risk cells with discounted ΔEAD of less than 5% discounted GDP. The presented results correspond to the scenario combining 
RCP 2.6, SSP2 and BaseHeightStd assumptions.: 

16 Please note that this estimate is heavily influenced by the fact that the city 
of Porto is facing a high flood risk under both BaseHeightSTD and OptimalSTD, 
meaning that there is insufficient space for flood adaptation improvement. 17 Discounted ΔEAD and GDP are both for the period 2010–2100 at 3%. 
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3. High-risk city-cells: Discounted ΔEAD between 25% and 100% of 
discounted GDP. 

4. Very-high-risk city-cells: Discounted ΔEAD of more than 100% dis
counted GDP. 

Fig. 10 presents low-risk city-cells, in particular those that could 
experience less than 5% GDP in discounted total ΔEAD. Most cities 
globally fall within this category. 

The medium-risk category is presented in Fig. 11. Fewer city-cells in 
the developed world belong in this category, and most cells can be found 
in Latin America, Africa and South-East Asia. 

The high-risk category is presented in Fig. 12 and isolates city-cells 
almost exclusively in Africa, Latin America and South-East Asia. Gyor 
in Hungary is the cell in Europe belonging to a high-risk category. 

Fig. 13 presents city-cells which belong to a very high-risk group of 
cells. As expected, the most affected cells could be found exclusively in 
Central Africa (Dr. Kongo) and in Latin America in areas with low river 
flood protection standards. 

4. Discussion 

The CLIMRISK-RIVER model was developed using the spatially- 
explicit damage estimates and flood protection standards from the 
GLOFRIS and FLOPROS models. Several model specifications were 
tested and the best performing statistical model - Model 6 - was selected 
as the CLIMRISK-RIVER model. The process of selecting the most suit
able model among different candidates was based on the measure of 
statistical fit to the GLOFRIS model data. However, the proposed model 
candidates were chosen with general climate and economic predictors in 
mind to remain intuitive and easy to use, thereby avoiding the issue of 
overfitting and going beyond simple emulation. 

Several validation methods were applied to the newly estimated 
model. We first looked at the spatial and frequency distributions of the 
adjusted R2 statistics for all cells. The model performs reasonably well 
on a global scale, the mean adjusted R2 of the model being 0.69 and 0.66 
for the BaseHeightStd and OptimalStd assumptions respectively. We also 
measured the model forecasting performance through within-sample 
and out-of-sample NRMSE. With an average out-of-sample 5-fold 
NRMSE value of 0.69 and a variance of 0.17 across all cells, we can 

Fig. 12. World cities located in high-risk cells with discounted ΔEAD exceeding 25% but not 100% of discounted GDP due to river flooding. The presented results correspond to 
the scenario combining RCP 2.6, SSP2 and BaseHeightStd assumptions. 

Fig. 11. World cities located in medium-risk cells with discounted ΔEAD exceeding 5% but not 25% of discounted GDP. The presented results correspond to the scenario 
combining RCP 2.6, SSP2 and BaseHeightStd assumptions. 
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confirm that the model performs reasonably well on previously unseen 
data. This grants confidence to our approach. 

To gain a better understanding of the magnitude of CLIMRISK-RIVER 
damage estimates within the total climate change-related damage, the 
results are plotted against total CLIMRISK damage estimates. On a global 
scale, under the BaseHeightStd flood protection scenario, the climate- 
related damage due to river flooding could exceed previously esti
mated total climate damage in CLIMRISK18 of $2 trillion in year 2100. 
However, when the economically optimal flood protection policy is 
introduced, the estimated damage drops down to just around $ 250 
billion, an estimated ten-fold decrease in global river flood damage at 
the end of the century. These results highlight the importance of ac
counting for adaptation in estimating the damage functions for IAMs. 
However, the divergent estimates under the different adaptation as
sumptions also reveal that adaptation policies introduce an important 
uncertainty in forecasting future flood risk. 

There are also some limitations of the model which require attention. 
Firstly, we are focusing on emulation of a complex river flood risk model 
and approximate the underlying physical and socio-economic processes 
to gain on both model and computational simplicity, which results in 
structural model uncertainties. For instance, flood damage development 
depends on the severity of flooding, which is approximated with annual 
resolution climatic variables used in this study to emulate damage. 
Changes in weather extremes are not accounted for in the current work 

for the sake of ease of model implementation within the broader 
CLIMRISK model. Moreover, it should be realized that the flood damage 
functions are based on GLOFRIS results forced with GCM simulations 
rather than recorded climatic data in which annual trends may be less 
clearly aligned with occurrence of extremes. Climate-economy IAMs 
inevitably require reduced form damage functions, like we estimated for 
CLIMRISK-RIVER, and despite the limitations we have confidence in our 
approach given the overall good forecast performance of our model. 

There are possibilities for improving the presented model in future 
work. One point of improvement could be the function estimation 
method. For example, different model specifications could be used, 
including (non-)linear interpolation or even less orthodox non- 
parametric methods (splines, bootstrapping, etc.). However, adding 
more degrees of freedom to the model should be done with care as this 
could lead to overfitting to the GLOFRIS estimates and complex damage 
functions, both of which CLIMRISK-RIVER attempts to avoid. 

5. Conclusion 

In this paper we presented CLIMRISK-RIVER, a climate change- 
related river flood damage assessment model that is integrated in a 
spatially explicit climate-economy IAM called CLIMRISK. The newly 
developed model operates on a local, spatially explicit scale and can 
project future climate change related river flood damage estimates for 
various socioeconomic, climate, and flood adaptation scenarios. The 
main idea behind the development of such a model was the need for 
generic damage functions that can be used with any climate and so
cioeconomic scenarios. This means that the user will be able to select 
any climate and socioeconomic scenario combination, including future 
to be developed versions of scenario projections, as long as they have 
local temperature, precipitation and GDP estimates to feed into the 
model. 

Two traits of the CLIMRISK-RIVER model are unique in the existing 
literature on climate-economy IAMs. First, its local nature allows the 
user to explore river flood damage projections for 0.5◦ × 0.5◦ cells 
anywhere in the world. This is much more detailed than most climate- 
economy IAMs that apply global damage functions or estimate the 
economic impacts of climate change for several world regions. 

Second, its inclusion of current and future adaptation scenarios that 
account for local river flood protection standards in generating the 
damage estimates is unique in existing literature of IAMs. Few existing 
climate-economy IAMs explicitly account for adaptation using policy 
relevant scenarios. 

Fig. 13. World cities located in very high-risk cells with discounted ΔEAD exceeding 100% discounted GDP. Most of the cells are located in Central Africa. The presented results 
correspond to the scenario combining RCP 2.6, SSP2 and BaseHeightStd assumptions. 

Table 4 
RICE damage function coefficients as in (Nordhaus, 2017).  

Region αr  βr  

Africa 0.3410 0.1983 
China 0.0785 0.1259 
EU 0 0.1591 
Eurasia 0 0.1305 
India 0.4385 0.1689 
Japan 0 0.1617 
Latin America 0.0609 0.1345 
Middle - East 0.2780 0.1586 
Other Asia 0.1755 0.1734 
Other High Income 0 0.1564 
Russia 0 0.1151 
US 0 0.1414  

18 RCP 2.6 – SSP2, Fig. 6. 
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Four main conclusions can be drawn from our analysis. First, our 
validation exercise shows that our reduced form flood damage functions 
estimated at the grid cell level perform reasonably well in capturing 
estimates produced by the more detailed flood damage model GLOFRIS. 

Second, while IAMs have relied on temperature as a proxy for climate 
change in generating economic impacts, we show that precipitation is a 
relevant additional explanatory variable in projecting changes in river 
flood damages. 

Third, our aggregated results for several large regions show that the 
additional flood damages from climate change are non-negligible 
compared to the total economic impacts estimated by CLIMRISK, 
although this depends on the flood adaptation scenario. 

Finally, the spatially heterogeneous results that we presented for 
countries and cities reveal the importance of introducing local-scale 
estimates like GLOFRIS into a more local IAM like CLIMRISK. These 
findings demonstrate the advantages of the local nature of our model, 
which allows the user to observe the spatial distribution of river flood 
damage that are otherwise lost through aggregation. 
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Appendix A. CLIMRISK model 

The flood risk model CLIMRISK-RIVER (CLIMRISK-RIVER) developed in this paper is introduced into the CLIMRISK model that operates on a local 
0.5◦ × 0.5◦ or larger scale (Estrada and Botzen, 2018). CLIMRISK is a global model that assesses the dynamic economic impacts of climate change at 
the local scale (0.5 x 0.5◦) for various socioeconomic and climate change projections. This is done by combining local GDP exposure information 
(Grübleret al., 2007) with climate projections obtained using the MAGICC climate model and scaling patterns from the climate models included in the 
CMIP5 (Lynch et al., 2017), (Kravitz et al., 2017). Regional impact functions are taken from the RICE model and encompass a broad range of economic 
sectors (Nordhaus, 2017), (Estrada et al., 2017). The result is a global, dynamic, integrated assessment model that projects climate damages on a local, 
regional and global scale. The CLIMRISK model is composed of the following interlinked components:  

1. Hazard: Climate change projections  
2. Exposure: Economic projections  
3. Vulnerability: Impact functions 

These modules build upon and integrate well-established models, datasets, techniques and procedures that have been previously evaluated and 
published, as will be explained next. 

1Hazard: Climate projections 

CLIMRISK combines probabilistically generated global temperatures with the regional precipitation and temperature scaling patterns from 41 
general circulation models (GCM) in the CMIP5 database (Lynch et al., 2017), (Kravitz et al., 2017). For the global and regional probabilistic estimates 
of climate projections, CLIMRISK uses the MAGICC version 6 software. MAGICC represents a reduced-complexity model of climate change and is 
widely used in the research community to project future climate impacts (Meinshausen et al., 2011), (Meinshausen et al., 2011),(van Vuuren and 
Carter, 2014), (Barker, 2007). It also relies on the technique of pattern scaling to produce local estimates of temperature and precipitation change. The 
MAGICC projections used in CLIMRISK are the difference in annual mean temperatures (in degrees Celsius) and precipitation (in %) with respect to 
1900. The spatial patterns of different GCMs are randomly selected using a uniform distribution (Weigel et al., 2010), (Knutti, 2010). CLIMRISK 
imposes a triangular probability distribution for the climate sensitivity parameter. This particular distribution is centered around a lower limit of 
1.5 ◦C, an upper limit of 4.5 ◦C and a mean value of 3 ◦C for climate sensitivity (Stockeret al., 2013). The triangular distribution of temperature 
realizations is a measure of climate sensitivity in the CLIMRISK model. By representing it using a probability distribution the IAM is able to produce 
temperature rise estimates that encompass the likely ranges of climate change. As precipitation realizations directly depend on temperature re
alizations in MAGICC, the triangular distribution covers both climate variables in the model. For the purposes of this paper, only the median (50th 
percentile) realizations are used for all scenario combinations. 

2Exposure: Economic projections 

Scenarios of GDP determine the economic exposure to the climate change hazard (A.1), which is an important input in the damage functions for the 
climate impacts calculation (A.3.). The economic projection data used in CLIMRISK and CLIMRISK-RIVER relies on the GDP and population 
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projections of the SSP Public Database Version 1.1 .19 In order to construct spatially explicit information, CLIMRISK combines the Shared Socio- 
Economic Pathways (SSP) and Special Report on Emissions Scenarios (SRES) projections available through the GGI Scenario Database Version 
2.0.1 (http://www.iiasa.ac.at/Research/GGI/DB/) (Raoet al., 2008), (Riahiet al., 2017), (Grübleret al., 2007). These databases are commonly used in 
climate impact studies and gather a variety of scenarios about GDP and population that have been produced by different modeling groups. This 
procedure of combining SSP and SRES data can be done due to the fact that certain SRES and SSP scenarios are consistent with each other (Riahiet al., 
2017). For example, A1 or B1 and the SSP1, SSP5 narratives represent a similar pattern of socio-economic development, the A2 scenario would make 
SSP3 and SSP4 scenarios plausible, while the B2 SRES is consistent with SSP2 (van Vuuren and Carter, 2014). The pattern scaling method used in 
CLIMRISK is similar to that in other general circulation models (Kravitz et al., 2017), (Tebaldi and Arblaster, 2014). The grid-cell i’s pattern spatial 
pattern, labelled as Pi,t, represents the proportion of GDP or population in cell i within region r to the regional total across all cells I: 

Pi,t =
YSRES

i,t
∑I

t=1YSRES
i,t

(6)  

where cell i belongs to a particular region i ∈ r, Yi,r,t
r is derived from SRES and for every SRES storyline. These patterns are not assumed to be constant 

over time and are updated every ten-years period. The regional total of the particular SSP scenario can then be scaled by the SRES consistent regional 
Pi,r,t pattern to obtain i’s grid-cell level estimate: 

YSSP
i,t = Pi,t * YSSP

r,t (7) 

By construction, the downscaled scenario projections match exactly the quantifications of the SSP narratives, produced by different modeling 
groups, at the aggregated 13 world regions and the global totals. CLIMRISK attempts to account for socioeconomic uncertainty by including all the SSP 
narratives (SSP1, SSP2, SSP3, SSP4, SSP5). In addition, uncertainty in GDP quantification is tackled through the use of economic data provided by 
three different modelling groups (OECD Env-Growth, IIASA, PIK) (Crespo Cuaresma, 2017),(Dellink et al., 2017),(Leimbach et al., 2017). The IIASA 
scenarios were selected for the use in CLIMRISK-RIVER because they correspond to the socio-economic projections used in the GLOFRIS model, 
making the model validation easier. However, using any of the above-mentioned sources is possible when generating river flood damage projections. 

3Vulnerability: impact functions 

CLIMRISK relies on the regional damage functions improved estimates of the RICE model (Nordhaus, 2017). These regional damage functions 
encompass a broad range of economic impacts. Following the RICE model, the impact functions take into account the losses suffered by major 
economic sectors such as agriculture, but also the cost of sea-level rise, adverse impacts on health, non-market damages and catastrophic damages 
(Nordhaus, 2014). The damage function in RICE is as follows: 

DRICE
r,t = αrTt + βrT2

t (8)  

where αr and βr represent the regional temperature coefficients that measure the impact of global mean annual temperature increase on climate related 
regional economic damage, Dr,t

RICE, measured in billions of dollars (2015 PPP). Table 4 presents the CLIMRISK/RICE regions along with their respective 
damage coefficients, based on (Nordhaus, 2017): 

The damage function defined above lets us derive the RICE regional climate impacts: 

I RICE
r,t = Yr,tDRICE

r,t (9)  

where Yr,t is the annual regional GDP in region r, at time t. When using pattern down-scaled inputs as defined in A.2, the regional damage function can 
be converted into a local: 

D CLIMRISK
i,t = αrTi,t + βrT2

i,t (10)  

where, as previously defined, αr and βr represent the regional temperature coefficients that measure the impact of local mean annual temperature 
increase Ti,t on climate related local economic damage DCLIMRISK

i,t in cell i. The total economic impact of climate change in year t in cell i is therefore: 

I i,t = Yi,tDCLIMRISK
i,t SRICE

r,t (11)  

where Yi,t represents the projected output for cell in year t as defined in equation (7) and Sr,t represents the scaling factor that ensures that projected 
damages are exactly the same regardless of whether the regional damage functions are driven by global or grid cell temperatures. 

The scaling factor Sr,t is defined as: 

SRICE
r,t =

IRICE
r,t

∑I
i Ii,t

(12)  

where IRICE
r,t represents the RICE regional impacts and cell i belongs to particular region i ∈ r. Consistent with the RICE model that assumes the same 

damage function can be applied across areas within a region, across SSP scenarios, and over time, we apply the same RICE damage function to grid 
cells within a region. This assumption may be seen as restrictive, which is why CLIMRISK-RIVER introduces damage functions for river flood risk that 

19 https://tntcat.iiasa.ac.at/SspDb. 
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vary between grid cells (see Section 2). 
In addition to the local impacts based on the RICE damage functions, CLIMRISK also introduces urban damages into the model. Given that the RICE 

model relies on regional mean surface air temperatures, it is not possible to account for the effect of urbanization on local temperatures in cities using 
the RICE model, an effect commonly known as urban heat island (UHI). However, the local nature of CLIMRISK makes the modeling of UHI possible. 
Namely, urban areas (>1 million inhabitants) are likely to experience higher damage due to climate change than non-urban areas as cities account for 
about 80% of global GDP and about 50% of global population (Re, 2004), (Dobbs et al., 2011). In addition, urban areas are expected to experience 
higher local temperatures due to the urbanization process. For example, the replacement of natural surfaces with structures of higher thermal capacity 
(concrete, asphalt etc.) leads to local climate change effects (Estrada et al., 2017). Since the grid cell scale is still likely to cover an area larger than a 
particular urban city, the total output in an urban cell is divided between the non-urban (20%) and urban (80%) part of the cell. The damage function 
for the non-urban part of a particular urban cell i follows a recently used damage function for urban areas in an IAM for cities (Estrada et al., 2017): 

DT,U
i,t = 0.9

(
Ti,t + Ui,t

2.5

)2

(13)  

where Ti,t and Ui,t represent changes in annual temperature in cell i due to global and local climate change, respectively. The combined damage from 
the non-urban and urban part of the urban cell represents the total expected damage for cell i in a given year t. 

The local temperature increase Ui,t in equation (13) is commonly estimated in the following way: 

Ui,t = aPopi,t (14)  

where Popi,t represents the urban population of cell i at time t and parameters a and b are commonly used in literature for estimating the urban 
temperature increase due to urbanization (Oke, 1973), (Karl et al., 1988), (Mills, 2014). 

Appendix B. Regressions 

The coefficients of regressions for all cells in Model 6 are presented in Figure 14, 15, 16 and 17, for various protection standard assumptions. In 
Table 5, the distribution of different coefficients is presented for Model 6, the chosen CLIMRISK-RIVER model. For presentation purposes, the co
efficients in this table are converted to yield damages in millions of $USD instead of billions (as presented in the paper). From the figures, we can 
observe that the effect of an increase in economic output (GDP) leads to increased exposure and higher river flood damages. The effect is the strongest 
with no existing flood protection standards (median $2.3 million) and drops significantly when optimal standards are employed (median $0.1 million) 
for every $1 billion increase in GDP. We can also observe that the effect of precipitation is stronger with no existing standards (median $1.1 million) 
than in other cases (median $0.1million) for a 1% point increase in precipitation. The effect of temperature remains ambiguous, with median value of 
$0 across all flood protection assumptions.

Fig. 14. Model 6 coefficient distribution: NoStd. 
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Fig. 15. Model 6 coefficient distribution: BaseHeightStd.  

Fig. 16. Model 6 coefficient distribution: BaseProbStd.   
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Fig. 17. Model 6 coefficient distribution: OptimalStd.   

Table 5 
Regression results table for CLIMRISK-RIVER. The coefficients refer to impacts on ΔEAD in millions of dollars (2005, PPP). The effects of temperature and precipitation change 
grow stronger as the protection standard assumption moves from NoStd towards OptimalStd. However, the effect of ΔGDP on total damage decreases dramatically with 
improved protection standards, indicating the reduction in river flood vulnerability.  

Coefficient P-value 

Variable Mean 2.5% 50% 97.5% Mean 2.5% 50% 97.5% 

Nostd 
βGDP − 80.84 − 21.65 2.34 345.61 0.002 0 0 0 
βᴛ − 31.62 − 272.64 0.08 76.51 0.007 0 0 0.001 
βᴛ

2 7.95 − 9.16 0 59.76 0.010 5 0 0 0.038 
βp 1.57 − 5.89 0.02 19.99 0.011 0 0 0.052 
βp

2 0.04 − 0.46 0 0.8 0.012 0 0 0.098 
βP*T  0.9 − 3.13 0 9.84 0.011 0 0 0.069 
NRMSE (OUT) 1.44 0 0 0.4 # Observations (cells): 16503 
Adj. R2 (IN) 0.83 0.53 0.86 0.97 
BaseHeightStd 
βGDP − 92.02 − 7.61 0.57 201.75 0.003 0 0 0 
βᴛ − 29.82 − 198.53 0 14.55 0.009 0 0 0.027 
βᴛ

2 6.62 − 2.26 0 35.58 0.012 0 0 0.079 
βp 0.02 − 6.66 0 6.19 0.012 0 0 0.091 
βp

2 0.05 − 0.22 0 0.56 0.011 0 0 0.057 
βP*T  1 − 0.89 0 8.89 0.010 0 0 0.045 
NRMSE (OUT) 4.5 0 0 0.64 # Observations (cells): 16503 
Adj. R2 (IN) 0.7 0.25 0.75 0.91 
BaseProbStd 
βGDP − 96.43 − 7.23 0.53 158.39 0.002 0 0 0 
βᴛ − 16.22 − 117.83 0 14.16 0.007 0 0 0.002 
βᴛ

2 3.64 − 1.75 0 23.36 0.010 0 0 0.045 
βp 0.1 − 2.14 0 3.08 0.013 0 0 0.119 
βp

2 0.01 − 0.1 0 0.17 0.014 0 0 0.158 
βP*T  0.44 − 0.44 0 3.19 0.014 0 0 0.139 
NRMSE (OUT) 3.34 0 0 0.43 #Observations (cells): 16502 
Adj. R2 (IN) 0.81 0.36 0.85 0.98 
OptimalStd 
βGDP − 131.87 − 5.73 0.1 42.19 0.004 0 0 0 

(continued on next page) 
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Table 5 (continued ) 

Coefficient P-value 

Variable Mean 2.5% 50% 97.5% Mean 2.5% 50% 97.5% 

βᴛ − 2.2 − 3.49 0 4.57 0.009 0 0 0.018 
βᴛ

2 0.63 − 0.45 0 1.43 0.012 0 0 0.084 
βp 0.02 − 0.43 0 0.59 0.014 0 0 0.141 
βp

2 0.01 − 0.03 0 0.04 0.013 0 0 0.136 
βP*T  0.12 − 0.14 0 0.39 0.013 0 0 0.106 
NRMSE (OUT) 4.62 0 0 0.67 # Observations (cells): 16503 
Adj. R2 (IN) 0.66 0.2 0.7 0.91  

Appendix C. BaseProbSTD and NoSTD results

Fig. 18. Annual ΔEAD in CLIMRISK-RIVER under different protection standards, RCP 2.6 and SSP2 scenario combinations.  
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Appendix D. Model forecasting performance 

NRMSE: Introduction 

To evaluate the forecasting performance of the CLIMRISK-RIVER model, we use a statistical method of normalized root mean squared error 
(NRMSE). First, we compute the within-sample NRMSE by normalizing the root mean squared error (RMSE, Eq. (15)) with the mean value of the 
observed response variable (Eq. (16)). 

To compute the out-of-sample NRMSE statistic for each cell, we run a five-fold stratified cross validation check where we split the data into four 
stratified training sets and one test set, each subset containing points from a single ESM. Next, we evaluate the out-of-sample RMSE on the test-fold. We 
repeat the process with a different training-test split set until every fold has been used in testing exactly once. Finally, the mean RMSE value across all 
five folds is taken and is normalized using the mean value of observed response variable (Eq. (16)) to yield the NRMSE (Eq. (17)). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

n=1(ΔEADGF − ΔEADCL− RV )
2

N

√

(15)  

ΔEADGF =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

n=1ΔEADGFn

N

√

(16)  

NRMSE =
RMSE

ΔEADGF
(17)  

where ΔEADGF is the mean value of all the ΔEADGF observations used to fit the damage function for a particular cell. The reason for this normalization 
is that it gives a more intuitive interpretation of the RMSE by indicating how large the forecasting error is relative to the mean ΔEADGF observed in 
GLOFRIS. 

NRMSE: Results 

In this section, we compare the performance of Models 3 and 6 as potential candidates for CLIMRISK-RIVER. Fig. 19 presents the out-of-sample 
predictions20 for the two models of interest. For the estimates of the remaining models, please refer to Fig. 20 and 21.       

20 The out-of-sample predictions, labelled as OUT, refer to stratified 5-fold cross validated RMSE estimates normalized using the mean value of the response 
variable. 
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Fig. 19. Forecasting performance of Models 3 and 6: The CLIMRISK-RIVER Model 6 (right panel) has a better forecasting performance than Model 3 (left panel) as 
measured by out-of-sample NRMSE for presented regions.  
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Fig. 20. Out-of-sample NRMSE for alternative model candidates.   

Fig. 21. Out-of-sample adjusted R2 for alternative model candidates.   
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Appendix E. Computational performance considerations 

Due to the large amount of data required for processing in CLIMRISK, various improvements to performance of the model have been made. The 
gridded nature of both the flood and climate damage data is suitable for parallel processing. Two API’s for parallel processing have been used in the 
model:  

• Multiprocessing library in Python which is able to get around the global interpreter lock (GIL), allowing computations to be split into many processes 
which can be run concurrently, utilizing the full potential of a multi-core system.  

• PyCUDA library in Python which utilizes the potential of a Graphical Processing Unit (GPU)present in the system. The cellular architecture of a 
GPU makes solving relatively simple operations over a large grid convenient and fast. Please note that an nVIDIA GPU with CUDA support is 
required. 
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